Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
2.
Nat Cell Biol ; 26(4): 613-627, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429478

ABSTRACT

The ability of tumour cells to thrive in harsh microenvironments depends on the utilization of nutrients available in the milieu. Here we show that pancreatic cancer-associated fibroblasts (CAFs) regulate tumour cell metabolism through the secretion of acetate, which can be blocked by silencing ATP citrate lyase (ACLY) in CAFs. We further show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) channels the exogenous acetate to regulate the dynamic cancer epigenome and transcriptome, thereby facilitating cancer cell survival in an acidic microenvironment. Comparative H3K27ac ChIP-seq and RNA-seq analyses revealed alterations in polyamine homeostasis through regulation of SAT1 gene expression and enrichment of the SP1-responsive signature. We identified acetate/ACSS2-mediated acetylation of SP1 at the lysine 19 residue that increased SP1 protein stability and transcriptional activity. Genetic or pharmacologic inhibition of the ACSS2-SP1-SAT1 axis diminished the tumour burden in mouse models. These results reveal that the metabolic flexibility imparted by the stroma-derived acetate enabled cancer cell survival under acidosis via the ACSS2-SP1-SAT1 axis.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Animals , Mice , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Acetates/pharmacology , Acetates/metabolism , Pancreatic Neoplasms/genetics , Polyamines , Tumor Microenvironment
3.
J Nucl Med ; 65(4): 580-585, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38485271

ABSTRACT

Aberrantly expressed glycans on mucins such as mucin-16 (MUC16) are implicated in the biology that promotes ovarian cancer (OC) malignancy. Here, we investigated the theranostic potential of a humanized antibody, huAR9.6, targeting fully glycosylated and hypoglycosylated MUC16 isoforms. Methods: In vitro and in vivo targeting of the diagnostic radiotracer [89Zr]Zr-DFO-huAR9.6 was investigated via binding experiments, immuno-PET imaging, and biodistribution studies on OC mouse models. Ovarian xenografts were used to determine the safety and efficacy of the therapeutic version, [177Lu]Lu-CHX-A″-DTPA-huAR9.6. Results: In vivo uptake of [89Zr]Zr-DFO-huAR9.6 supported in vitro-determined expression levels: high uptake in OVCAR3 and OVCAR4 tumors, low uptake in OVCAR5 tumors, and no uptake in OVCAR8 tumors. Accordingly, [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in the OVCAR3 model and improved overall survival in the OVCAR3 and OVCAR5 models in comparison to the saline control. Hematologic toxicity was transient in both models. Conclusion: PET imaging of OC xenografts showed that [89Zr]Zr-DFO-huAR9.6 delineated MUC16 expression levels, which correlated with in vitro results. Additionally, we showed that [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in highly MUC16-expressing tumors. These findings demonstrate great potential for 89Zr- and 177Lu-labeled huAR9.6 as theranostic tools for the diagnosis and treatment of OC.


Subject(s)
Antibodies, Monoclonal, Humanized , CA-125 Antigen , Mucins , Ovarian Neoplasms , Animals , Female , Humans , Mice , Apoptosis , CA-125 Antigen/immunology , Cell Line, Tumor , Membrane Proteins/immunology , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/therapy , Pentetic Acid , Precision Medicine , Tissue Distribution , Antibodies, Monoclonal, Humanized/therapeutic use , Mucins/immunology
4.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547055

ABSTRACT

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Pancreatic Neoplasms , Mice , Animals , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Polyamines/metabolism , Signal Transduction , Acetyltransferases/genetics , Acetyltransferases/metabolism , Mucin-1
5.
Mol Cancer Ther ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394685

ABSTRACT

Mucin-16 (MUC16) is a target for antibody-mediated immunotherapy in pancreatic ductal adenocarcinoma (PDAC) amongst other malignancies. The MUC16 specific monoclonal antibody AR9.6 has shown promise for PDAC immunotherapy and imaging. Here, we report the structural and biological characterization of the humanized AR9.6 antibody (huAR9.6). The structure of huAR9.6 was determined in complex with a MUC16 SEA (Sea urchin sperm, Enterokinase, Agrin) domain. Binding of huAR9.6 to recombinant, shed, and cell-surface MUC16 was characterized, and anti-PDAC activity was evaluated in vitro and in vivo. huAR9.6 bound a discontinuous, SEA domain epitope with an affinity of ~90 nM. Binding affinity depended on the specific SEA domain(s) present, and glycosylation enhanced affinity by 3-7-fold driven by favorable entropy and enthalpy and via distinct transition state thermodynamic pathways. Treatment with huAR9.6 reduced the in vitro growth, migration, invasion, and clonogenicity of MUC16-positive PDAC cells and patient-derived organoids (PDOs). HuAR9.6 blocked MUC16-mediated ErbB and AKT activation in PDAC cells, PDOs and patient-derived xenografts and induced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. More importantly, huAR9.6 treatment caused substantial PDAC regression in subcutaneous and orthotopic tumor models. The mechanism of action of huAR9.6 may depend on dense avid binding to homologous SEA domains on MUC16. The results of this study validate the translational therapeutic potential of huAR9.6 against MUC16-positive PDACs.

6.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37066260

ABSTRACT

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is 1) strictly dependent on pyrimidine nucleotide depletion, 2) independent of canonical antigen presentation pathway transcriptional regulators, and 3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

7.
Adv Sci (Weinh) ; 11(6): e2308537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110836

ABSTRACT

Engrailed-1 (EN1) is a critical homeodomain transcription factor (TF) required for neuronal survival, and EN1 expression has been shown to promote aggressive forms of triple negative breast cancer. Here, it is reported that EN1 is aberrantly expressed in a subset of pancreatic ductal adenocarcinoma (PDA) patients with poor outcomes. EN1 predominantly repressed its target genes through direct binding to gene enhancers and promoters, implicating roles in the activation of MAPK pathways and the acquisition of mesenchymal cell properties. Gain- and loss-of-function experiments demonstrated that EN1 promoted PDA transformation and metastasis in vitro and in vivo. The findings nominate the targeting of EN1 and downstream pathways in aggressive PDA.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Pancreatic Neoplasms/genetics , Gene Expression Regulation , Carcinoma, Pancreatic Ductal/genetics
8.
Cancers (Basel) ; 15(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067200

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents a critical global health challenge, and early detection is crucial for improving the 5-year survival rate. Recent medical imaging and computational algorithm advances offer potential solutions for early diagnosis. Deep learning, particularly in the form of convolutional neural networks (CNNs), has demonstrated success in medical image analysis tasks, including classification and segmentation. However, the limited availability of clinical data for training purposes continues to represent a significant obstacle. Data augmentation, generative adversarial networks (GANs), and cross-validation are potential techniques to address this limitation and improve model performance, but effective solutions are still rare for 3D PDAC, where the contrast is especially poor, owing to the high heterogeneity in both tumor and background tissues. In this study, we developed a new GAN-based model, named 3DGAUnet, for generating realistic 3D CT images of PDAC tumors and pancreatic tissue, which can generate the inter-slice connection data that the existing 2D CT image synthesis models lack. The transition to 3D models allowed the preservation of contextual information from adjacent slices, improving efficiency and accuracy, especially for the poor-contrast challenging case of PDAC. PDAC's challenging characteristics, such as an iso-attenuating or hypodense appearance and lack of well-defined margins, make tumor shape and texture learning challenging. To overcome these challenges and improve the performance of 3D GAN models, our innovation was to develop a 3D U-Net architecture for the generator, to improve shape and texture learning for PDAC tumors and pancreatic tissue. Thorough examination and validation across many datasets were conducted on the developed 3D GAN model, to ascertain the efficacy and applicability of the model in clinical contexts. Our approach offers a promising path for tackling the urgent requirement for creative and synergistic methods to combat PDAC. The development of this GAN-based model has the potential to alleviate data scarcity issues, elevate the quality of synthesized data, and thereby facilitate the progression of deep learning models, to enhance the accuracy and early detection of PDAC tumors, which could profoundly impact patient outcomes. Furthermore, the model has the potential to be adapted to other types of solid tumors, hence making significant contributions to the field of medical imaging in terms of image processing models.

9.
PLoS One ; 18(11): e0289183, 2023.
Article in English | MEDLINE | ID: mdl-37963142

ABSTRACT

Clostridium novyi has demonstrated selective efficacy against solid tumors largely due to the microenvironment contained within dense tumor cores. The core of a solid tumor is typically hypoxic, acidic, and necrotic-impeding the penetration of current therapeutics. C. novyi is attracted to the tumor microenvironment and once there, can both lyse and proliferate while simultaneously re-activating the suppressed immune system. C. novyi systemic toxicity is easily mitigated by knocking out the phage DNA plasmid encoded alpha toxin resulting in C. novyi-NT; but, after intravenous injection spores are quickly cleared by phagocytosis before accomplishing significant tumor localization. C. novyi-NT could be designed to accomplish intravenous delivery with the potential to target all solid tumors and their metastases in a single dose. This study characterizes CRISPR/Cas9 modified C. novyi-NT to insert the gene for RGD, a tumor targeting peptide, expressed within the promoter region of a spore coat protein. Expression of the RGD peptide on the outer spore coat of C. novyi-NT indicates an increased capacity for tumor localization of C. novyi upon intravenous introduction based on the natural binding of RGD with the αvß3 integrin commonly overexpressed on the epithelial tissue surrounding a tumor, and lead to immune stimulation.


Subject(s)
Clostridium botulinum , Pancreatic Neoplasms , Humans , Spores, Bacterial/genetics , Clostridium/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Oligopeptides/metabolism , Tumor Microenvironment
10.
medRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961101

ABSTRACT

Addressing the significant level of variability exhibited by pancreatic cancer necessitates the adoption of a systems biology approach that integrates molecular data, biological properties of the tumors, and clinical features of the patients. In this study, a comprehensive multi-omics methodology was employed to examine a distinctive collection patient dataset containing rapid autopsy tumor and normal tissue samples as well as longitudinal imaging with a focus on pancreatic cancer. By performing a whole exome sequencing analysis on tumor and normal tissues to identify somatic gene variants and a radiomics feature analysis to tumor CT images, the genome-wide association approach established a connection between pancreatic cancer driver genes and relevant radiomics features, enabling a thorough and quantitative assessment of the heterogeneity of pancreatic tumors. The significant association between sets of genes and radiomics features revealed the involvement of genes in shaping tumor morphological heterogeneity. Some results of the association established a connection between the molecular level mechanism and their outcomes at the level of tumor structural heterogeneity. Because tumor structure and tumor structural heterogeneity are related to the patients' overall survival, patients who had pancreatic cancer driver gene mutations with an association to a certain radiomics feature have been observed to experience worse survival rates than cases without these somatic mutations. Furthermore, the outcome of the association analysis has revealed potential gene mutations and radiomics feature candidates that warrant further investigation in future research endeavors.

11.
Pharmaceutics ; 15(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514190

ABSTRACT

Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.

12.
Nature ; 618(7964): 374-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225988

ABSTRACT

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Subject(s)
Extracellular Vesicles , Fatty Acids , Fatty Liver , Liver , Pancreatic Neoplasms , Animals , Mice , Cytochrome P-450 Enzyme System/genetics , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Liver/metabolism , Liver/pathology , Liver/physiopathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Liver Neoplasms/secondary , Humans , Inflammation/metabolism , Palmitic Acid/metabolism , Kupffer Cells , Oxidative Phosphorylation , rab27 GTP-Binding Proteins/deficiency
13.
Adv Sci (Weinh) ; 10(16): e2207010, 2023 06.
Article in English | MEDLINE | ID: mdl-37083240

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with high incidence rates of metastasis and cachexia. High circulating activin A, a homodimer of inhibin ßA subunits that are encoded by INHBA gene, predicts poor survival among PDAC patients. However, it still raises the question of whether activin A suppression renders favorable PDAC outcomes. Here, the authors demonstrate that activin A is abundantly detected in tumor and stromal cells on PDAC tissue microarray and mouse PDAC sections. In orthotopic male mice, activin A suppression, which is acquired by tumor-targeted Inhba siRNA using cholesterol-modified polymeric nanoparticles, retards tumor growth/metastasis and cachexia and improves survival when compared to scramble siRNA-treated group. Histologically, activin A suppression coincides with decreased expression of proliferation marker Ki67 but increased accumulation of α-SMAhigh fibroblasts and cytotoxic T cells in the tumors. In vitro data demonstrate that activin A promotes KPC cell proliferation and induces the downregulation of α-SMA and upregulation of IL-6 in pancreatic stellate cells (PSC) in the SMAD3-dependent mechanism. Moreover, conditioned media from activin A-stimulated PSC promoted KPC cell growth. Collectively, our data provide a mechanistic basis for tumor-promoting roles of activin A and support therapeutic potentials of tumor activin A suppression for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Mice , Animals , Cachexia/etiology , Cell Line, Tumor , RNA, Small Interfering/genetics
14.
Cancer Lett ; 561: 216150, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36997106

ABSTRACT

Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Surgery, Computer-Assisted , Humans , Contrast Media , Fluorescence , Mucins , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Surgery, Computer-Assisted/methods , Proteins , Optical Imaging/methods , Pancreatic Neoplasms
15.
Dis Model Mech ; 16(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36579622

ABSTRACT

The 5-year survival of pancreatic cancer (PC) remains low. Murine models may not adequately mimic human PC and can be too small for medical device development. A large-animal PC model could address these issues. We induced and characterized pancreatic tumors in Oncopigs (transgenic swine containing KRASG12D and TP53R167H). The oncopigs underwent injection of adenovirus expressing Cre recombinase (AdCre) into one of the main pancreatic ducts. Resultant tumors were characterized by histology, cytokine expression, exome sequencing and transcriptome analysis. Ten of 14 Oncopigs (71%) had gross tumor within 3 weeks. At necropsy, all of these subjects had gastric outlet obstruction secondary to pancreatic tumor and phlegmon. Oncopigs with injections without Cre recombinase and wild-type pigs with AdCre injection did not show notable effect. Exome and transcriptome analysis of the porcine pancreatic tumors revealed similarity to the molecular signatures and pathways of human PC. Although further optimization and validation of this porcine PC model would be beneficial, it is anticipated that this model will be useful for focused research and development of diagnostic and therapeutic technologies for PC. This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Swine , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/pathology , Animals, Genetically Modified , Gene Expression Profiling , Carcinoma, Pancreatic Ductal/pathology , Tumor Suppressor Protein p53 , Pancreatic Neoplasms
16.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35752173

ABSTRACT

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms , Thyroid Hormones/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , Methionine , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins , Pancreatic Neoplasms
18.
Mol Cancer Res ; 20(8): 1208-1221, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35533267

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, as it commonly metastasizes to the liver resulting in an overall poor prognosis. However, the molecular mechanism involved in liver metastasis remains poorly understood. Here, we aimed to identify the MUC16-mediated molecular mechanism of PDAC-liver metastasis. Previous studies demonstrated that MUC16 and its C-terminal (Cter) domain are involved in the aggressiveness of PDAC. In this study, we observed MUC16 and its Cter expression significantly high in human PDAC tissues, PDAC organoids, and metastatic liver tissues, while no expression was observed in normal pancreatic tissues using IHC and immunofluorescence (IFC) analyses. MUC16 knockdown in SW1990 and CD18/HPAF PDAC cells significantly decreased the colony formation, migration, and endothelial/p-selectin binding. In contrast, MUC16-Cter ectopic overexpression showed significantly increased colony formation and motility in MiaPaCa2 pancreatic cancer cells. Interestingly, MUC16 promoted cell survival and colonization in the liver, mimicking an ex vivo environment. Furthermore, MUC16 enhanced liver metastasis in the in vivo mouse model. Our integrated analyses of RNA-sequencing suggested that MUC16 alters Neuropilin-2 (NRP2) and cell adhesion molecules in pancreatic cancer cells. Furthermore, we identified that MUC16 regulated NRP2 via JAK2/STAT1 signaling in PDAC. NRP2 knockdown in MUC16-overexpressed PDAC cells showed significantly decreased cell adhesion and migration. Overall, the findings indicate that MUC16 regulates NRP2 and induces metastasis in PDAC. IMPLICATIONS: This study shows that MUC16 plays a critical role in PDAC liver metastasis by mediating NRP2 regulation by JAK2/STAT1 axis, thereby paving the way for future therapy efforts for metastatic PDAC.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Liver Neoplasms , Neuropilin-2 , Pancreatic Neoplasms , Adenocarcinoma/pathology , Animals , CA-125 Antigen/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Membrane Proteins/metabolism , Mice , Neoplasm Metastasis , Neuropilin-2/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
19.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628269

ABSTRACT

Elevated levels of Mucin-16 (MUC16) in conjunction with a high expression of truncated O-glycans is implicated in playing crucial roles in the malignancy of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms by which such aberrant glycoforms present on MUC16 itself promote an increased disease burden in PDAC are yet to be elucidated. This study demonstrates that the CRISPR/Cas9-mediated genetic deletion of MUC16 in PDAC cells decreases tumor cell migration. We found that MUC16 enhances tumor malignancy by activating the integrin-linked kinase and focal adhesion kinase (ILK/FAK)-signaling axis. These findings are especially noteworthy in truncated O-glycan (Tn and STn antigen)-expressing PDAC cells. Activation of these oncogenic-signaling pathways resulted in part from interactions between MUC16 and integrin complexes (α4ß1), which showed a stronger association with aberrant glycoforms of MUC16. Using a monoclonal antibody to functionally hinder MUC16 significantly reduced the migratory cascades in our model. Together, these findings suggest that truncated O-glycan containing MUC16 exacerbates malignancy in PDAC by activating FAK signaling through specific interactions with α4 and ß1 integrin complexes on cancer cell membranes. Targeting these aberrant glycoforms of MUC16 can aid in the development of a novel platform to study and treat metastatic pancreatic cancer.


Subject(s)
CA-125 Antigen , Carcinoma, Pancreatic Ductal , Focal Adhesion Kinase 1 , Integrin alpha4beta1 , Membrane Proteins , Pancreatic Neoplasms , CA-125 Antigen/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Humans , Integrin alpha4beta1/metabolism , Membrane Proteins/metabolism , Pancreatic Hormones/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Polysaccharides/metabolism
20.
Mol Pharm ; 19(10): 3586-3599, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35640060

ABSTRACT

Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , CA-125 Antigen/metabolism , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/surgery , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Membrane Proteins/metabolism , Mice , Neoplasm Recurrence, Local , Optical Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Tissue Distribution , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...